pZP vaccine immunocontraception of African elephant (Loxodonta africana) cows: A review of 22 years of research

Henk Bertschinger
Audrey Delsink
Martin Schulman
JJ van Altena
Jay Kirkpatrick
Thank the Botstiber Foundation for funding my trip to Kenya

Funding of the Veterinary Population Management Laboratory

• University of Pretoria
• HSUS and later HSI – financial support since 2003
• Technology Innovation Agency SA
Team/Collaborators

– **University of Pretoria**

 Veterinary Population Management (vaccine production and research)
 - Martin Schulman, Henk Bertschinger, Anne-Marie Human, Ofentse Mogoba
 - PhD students: C Joone, M Nolan and E Botha

 Veterinary Tropical Diseases
 - Jannie Crafford

– **HSI elephant contraception team**
 - Audrey Delsink, JJ van Altena, Teresa Telecky,

– **CSIR – Biosciences**
 - Michael Crampton, Maretha O’Kennedy, HC Stark, Robyn Roth, Ereck Chakauya, Tsepo Tsekoa

– **Utrecht University**
 - Tom Stout, Ben Colenbrander, Victor Rutten

• Many veterinarians for treatment of the elephants
• 34 Game Reserves
Elephant immunocontraception

- Two immuno-methods used
- Porcine zona pellucida (pZP) vaccine
 - Prepared from ovaries of slaughtered pigs
 - Final product formulated with Freund’s modified complete (primary) and Freund’s incomplete adjuvants
 - In 2003 started producing vaccine in our own laboratory
- GnRH vaccine (Improvac)
 - Used in bulls to control androgen-related aggression
 - Also works in cows
How does pZP work?

Behaviour

Oestradiol

Pheromone
• No Fertilization
• No pregnancy
• Oestrous cycle continues = 15 weeks in elephants
• But seasonal anoestrus common depending on rainfall and nutrition availability
Need for repeated treatment to boost anti-pZP antibody titres
Beginnings of elephant immunocontraception with pZP

- Study based on the work in horses by Liu, Kirkpatrick, Turner and others
- In 1995 contacted by Jay Kirkpatrick and Richard Fayrer-Hosken
 - Provide proof of concept for elephants
 - Follow up with a field trial in the Kruger National Park (KNP) 1995-1999

Proof provided in each study
Makalali Private Game Reserve
Flagship Immunocontraception project

- Makalali project initiated in 2000
- Tested
 - efficacy
 - safety
 - reversibility and
 - population effects
From 2002 to 2005 another 6 reserves joined the program

<table>
<thead>
<tr>
<th></th>
<th>Makalali<sup>a</sup></th>
<th>Mabula</th>
<th>Phinda<sup>b</sup></th>
<th>Shambala</th>
<th>Thornybush</th>
<th>Welgevonden</th>
<th>Kaingo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (ha)</td>
<td>24 500</td>
<td>8 000</td>
<td>22 800</td>
<td>8 000</td>
<td>11 548</td>
<td>35 000</td>
<td>8 461</td>
</tr>
<tr>
<td>Population size (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>47</td>
<td>11</td>
<td>92</td>
<td>10</td>
<td>35</td>
<td>117</td>
<td>9</td>
</tr>
<tr>
<td>Cows treated (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>23</td>
<td>4</td>
<td>19</td>
<td>4</td>
<td>19</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>Age range of cows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(years) Year 1</td>
<td>12-50</td>
<td>13-16</td>
<td>10-35</td>
<td>19-25</td>
<td>6-31</td>
<td>9-44</td>
<td>10-40</td>
</tr>
<tr>
<td>Cows (n) calved</td>
<td>No data</td>
<td>3</td>
<td>18</td>
<td>No data</td>
<td>11</td>
<td>25</td>
<td>No data</td>
</tr>
<tr>
<td>before treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calving% before</td>
<td>21.7%</td>
<td>25.0% (3)</td>
<td>21.0% (6)</td>
<td>No data</td>
<td>16.7% (6)</td>
<td>20.6% (6)</td>
<td>No data</td>
</tr>
<tr>
<td>treatment (n years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effects of vaccination on calving % of elephant cows in 7 game reserves

Cows normalised according to number of years in the program

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of reserves</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Cows treated</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>107</td>
<td>98</td>
</tr>
<tr>
<td>Calves born</td>
<td>35</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calving %</td>
<td>32.4%</td>
<td>20.4%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Side effects and safety

- Safety during pregnancy
 - 57 (52.7%) cows were pregnant at various stages during the first two years of vaccination
 - Gave birth to normal healthy calves thus demonstrating safety during pregnancy
 - 2 calves lost after birth due to injuries i.e. unrelated to contraception

- Contraceptive effect reached around time of first booster

<table>
<thead>
<tr>
<th>Trimester of gestation at time of primary vaccination</th>
<th>Number of calves</th>
<th>Conception in relation to primary vaccination</th>
<th>Number of calves</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>18</td>
<td>Before</td>
<td>55</td>
</tr>
<tr>
<td>Second</td>
<td>20</td>
<td>Around the primary</td>
<td>1</td>
</tr>
<tr>
<td>Third</td>
<td>19</td>
<td>Primary and 1st booster</td>
<td>1</td>
</tr>
</tbody>
</table>

- Contraceptive effect reached around time of first booster
Additional game reserves join the program

• Eighteen private game reserves
• Seven provincial and one national park!

– Significant because SANARKS had initially been strongly opposed to use of immunocontraception in elephants

• Addo Elephant Park – two portions - excludes Main Camp (2013)
• Main camp to be initiated in 2020

– KZN parks
• Tembe Elephant Park (2007), Mkuze, Ithala, HiP and iSimangaliso Wetland Park (all 2015)

Today:
Total of \(\approx 1000 \) elephant cows being treated in 34 game reserves

iSimangaliso Wetland Park (all 2015)
New challenges posed by larger populations

- Populations too large for individual identification (40 – 160 cows)
- Terrain and habitat make darting of individuals more difficult
- To facilitate darting the matriarchs of individual herds are radio-collared
 - Herd numbers known - at least after the first round.
- Herd located and blanket darting applied
Use of mark and inject darts
Examples of larger populations

• Many reserves have not reached Year 3 of their respective programs
• Effect on calving rate not available yet

Three examples where results are available
• Tembe Elephant Park (2007)
 – Total population in 2007 = 200
• Addo Elephant Park (Sections 2013)
 – Total population in 2013 = 125-130
• Ithala to be presented by Pete Ruinard (2014)
Tembe calves born before and after contraception

- 2004 - 2007 10 to 14 calves annually
 - 2008 = 8 calves and 4 natural mortalities
 - 2009 = 10 calves and 2 mortalities
 - 2010 = 5 calves and 8 mortalities
 - 2011 = 3 calves and 9 mortalities
 ▶ net population increase of 3 elephants

- 2012 to 2016 3, 4, 4, 8 and 3 calves born respectively
Addo – calves born before and after (preliminary data)

• Population growth rate before start of program
 – Nyati 5% and
 – Kuzuko 2% per annum

• 2013 contraception commenced
 – ≈ 50 cows out of a total population of 125-130
 – Vaccinated three times in 2013
 – Followed by annual boosters

• 2016 zero calves born

• Benefit of 2 boosters in Year 1 vs cost
Effect of % contraception on population growth modelled by Bruce Page

- Mortality: 2.5%
- Calving interval: 4 years
- Conception rate: 1, 0.4, and 0.2
- r: 6.0, 4.0, and 2.4

Population size across years with different contraception levels.
Reversibility – cows calved

- Cows reversed
 - KNP study demonstrated short-term reversal in 3 cows treated for 1 year
 - Makalali
- **Connie** - vaccinated 2002-2005 (4 y) – calved November 2008: conceived after 19 m after last treatment
- **Smelly** - vaccinated 2000-2005 (6 y) – calved Dec/Jan 2008: conceived 18 months after last treatment
- **Toni** - vaccinated 2000-2011 (12 y) : died 2017 - **not** pregnant 60 m after last treatment but ovaries active
Reversibility – cows calved

• Larger populations – blanket treatment
 – Cows are missed (not located) during annual treatment sessions
 – Young cows start to cycle and conceive
 – Should result in a continual birth of calves

• Examples
 – Tembe

 Calves born: 3 in 2014; 5 in 2015; 8 in 2016